On RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions Using ℓq Quasi Norms
نویسندگان
چکیده
This paper follows the recent discussion on the sparse solution recovery with quasi-norms lq, q ∈ (0, 1) when the sensing matrix possesses a Restricted Isometry Constant δ2k (RIC). Our key tool is an improvement on a version of “the converse of a generalized Cauchy-Schwarz inequality” extended to the setting of quasi-norm. We show that, if δ2k ≤ 1/2, any minimizer of the lq minimization, at least for those q ∈ (0, 0.9181], is the sparse solution of the corresponding underdetermined linear system. Moreover, if δ2k ≤ 0.4931, the sparse solution can be recovered by any lq, q ∈ (0, 1) minimization. The values 0.9181 and 0.4931 improves those reported previously in the literature.
منابع مشابه
On RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions
This paper follows the recent discussion on the sparse solution recovery with quasi-norms `q, q ∈ (0, 1) when the sensing matrix possesses a Restricted Isometry Constant δ2k (RIC). Our key tool is an improvement on a version of “the converse of a generalized Cauchy-Schwarz inequality” extended to the setting of quasi-norm. We show that, if δ2k ≤ 1/2, any minimizer of the lq minimization, at lea...
متن کاملBounds of restricted isometry constants in extreme asymptotics: formulae for Gaussian matrices
Restricted Isometry Constants (RICs) provide a measure of how far from an isometry a matrix can be when acting on sparse vectors. This, and related quantities, provide a mechanism by which standard eigen-analysis can be applied to topics relying on sparsity. RIC bounds have been presented for a variety of random matrices and matrix dimension and sparsity ranges. We provide explicitly formulae f...
متن کاملOptimizing Matrices For Compressed Sensing Using Existing Goodness Measures: Negative Results, And An Alternative
The bound that arises out of sparse recovery analysis in compressed sensing involves input signal sparsity and some property of the sensing matrix. A directed effort has therefore been made in the literature to optimize the sensing matrices for optimal recovery using this property. We discover, in the specific case of optimizing sensing codes for the CACTI camera [1], that the very popular meth...
متن کاملImproved Bounds for RIC in Compressed Sensing
This paper improves bounds for restricted isometry constant (RIC) in compressed sensing. Let Φ be a m × n real matrix and k be a positive integer with k ≤ n. The main results of this paper show that if the restricted isometry constant of Φ satisfies δk+ak < 3 2 − 1 + √ (4a+ 3)2 − 8 8a for a > 3 8 , then k-sparse solution can be recovered exactly via l1 minimization in the noiseless case. In par...
متن کاملOn Lp minimisation, instance optimality, and restricted isometry constants for sparse approximation
We extend recent results regarding the restricted isometry constants (RIC) and sparse recovery using l minimisation. Here we consider the case of the sparse approximation of compressible rather than exactly sparse signals. We begin by showing that the robust null space property used in [3] characterises the robustness of the estimation of compressible signals by l mimisation for all l norms, 0 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1312.3379 شماره
صفحات -
تاریخ انتشار 2013